Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Ferroelectric (Hf,Zr)O2 thin films have attracted increased interest from the ferroelectrics community and the semiconductor industry due to their ability to exhibit ferroelectricity at nanoscale dimensions. The properties and performance of the ferroelectric (Hf,Zr)O2 films generally depend on various factors such as surface energy (e.g., through grain size or thickness), defects (e.g., through dopants, oxygen vacancies, or impurities), electrodes, interface quality, and preferred crystallographic orientation (also known as crystallographic texture or simply texture) of grains and/or domains. Although some factors affecting properties and performance have been studied extensively, the effects of texture on the material properties are still not understood. Here, the influence of texture of the bottom electrode and Hf0.5Zr0.5O2 (HZO) films on properties and performance is reported. The uniqueness of this work is the use of a consistent deposition process known as Sequential, No-Atmosphere Processing (SNAP) that produces films with different preferred orientations yet minimal other differences. The results shown in this study provide both new insight on the importance of the bottom electrode texture and new fundamental processing-structure–property relationships for the HZO films.more » « less
- 
            Abstract The removal of lead from commercialized perovskite‐oxide‐based piezoceramics has been a recent major topic in materials research owing to legislation in many countries. In this regard, Sn(II)‐perovskite oxides have garnered keen interest due to their predicted large spontaneous electric polarizations and isoelectronic nature for substitution of Pb(II) cations. However, they have not been considered synthesizable owing to their high metastability. Herein, the perovskite lead hafnate, i.e., PbHfO3in space groupPbam, is shown to react with SnClF at a low temperature of 300 °C, and resulting in the first complete Sn(II)‐for‐Pb(II) substitution, i.e. SnHfO3. During this topotactic transformation, a high purity and crystallinity is conserved withPbamsymmetry, as confirmed by X‐ray and electron diffraction, elemental analysis, and119Sn Mössbauer spectroscopy. In situ diffraction shows SnHfO3also possesses reversible phase transformations and is potentially polar between ≈130–200 °C. This so‐called ‘de‐leadification’ is thus shown to represent a highly useful strategy to fully remove lead from perovskite‐oxide‐based piezoceramics and opening the door to new explorations of polar and antipolar Sn(II)‐oxide materials.more » « less
- 
            null (Ed.)A systematic study of (1− x )Pb(Fe 0.5 Nb 0.5 )O 3 – x BiFeO 3 ( x = 0–0.5) was performed by combining dielectric and electromechanical measurements with structural and microstructural characterization in order to investigate the strengthening of the relaxor properties when adding BiFeO 3 into Pb(Fe 0.5 Nb 0.5 )O 3 and forming a solid solution. Pb(Fe 0.5 Nb 0.5 )O 3 crystalizes in monoclinic symmetry exhibiting ferroelectric-like polarization versus electric field ( P–E ) hysteresis loop and sub-micron-sized ferroelectric domains. Adding BiFeO 3 to Pb(Fe 0.5 Nb 0.5 )O 3 favors a pseudocubic phase and a gradual strengthening of the relaxor behavior of the prepared ceramics. This is indicated by a broadening of the peak in temperature-dependent permittivity, narrowing of P–E hysteresis loops and decreasing size of ferroelectric domains resulting in polar nanodomains for x = 0.20 composition. The relaxor behavior was additionally confirmed by Vogel–Fulcher analysis. For the x ≥ 0.30 compositions, broad high-temperature anomalies are observed in dielectric permittivity versus temperature measurements in addition to the frequency-dispersive peak located close to room temperature. These samples also exhibit pinched P–E hysteresis loops. The observed pinching is most probably related to the reorganization of polar nanoregions under the electric field as shown by synchrotron X-ray diffraction measurements as well as by piezo-response force microscopy analysis, while in part affected by the presence of charged point defects and anti-ferroelectric order, as indicated from rapid cooling experiments and high-resolution transmission electron microscopy, respectively.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
